8,514 research outputs found

    Analytic Solutions to the RG Equations of the Neutrino Physical Parameters

    Get PDF
    In the case of two generation neutrinos, the energy-scale dependence of the lepton-flavor mixing matrix with Majorana phase can be governed by only one parameter r, which is the ratio between the diagonal elements of neutrino mass matrix. By using this parameter r, we derive the analytic solutions to the renormalization group equations of the physical parameters, which are the mixing angle, Majorana phase, and the ratio of the mass-squared difference to the mass squared of the heaviest neutrino. The energy-scale dependence of the Majorana phase is clarified by using these analytic solutions. The instability of the Majorana phase causes in the same parameter region in which the mixing angle is unstable against quantum corrections.Comment: LaTeX2e, 9 pages, 6 figure

    The effects of Majorana phases in three-generation neutrinos

    Full text link
    Neutrino-oscillation solutions for the atmospheric neutrino anomaly and the solar neutrino deficit can determine the texture of the neutrino mass matrix according to three types of neutrino mass hierarchies as Type A: m1m2m3m_1^{} \ll m_2^{} \ll m_3^{}, Type B: m1m2m3m_1^{} \sim m_2^{} \gg m_3^{}, and Type C: m1m2m3m_1^{} \sim m_2^{} \sim m_3^{}, where mim_i is the ii-th generation neutrino absolute mass. The relative sign assignments of neutrino masses in each type of mass hierarchies play the crucial roles for the stability against quantum corrections. Actually, two physical Majorana phases in the lepton flavor mixing matrix connect among the relative sign assignments of neutrino masses. Therefore, in this paper we analyze the stability of mixing angles against quantum corrections according to three types of neutrino mass hierarchies (Type A, B, C) and two Majorana phases. Two phases play the crucial roles for the stability of the mixing angles against the quantum corrections.Comment: LaTeX2e, 15 pages, 8 figure

    Energy-Scale Dependence of the Lepton-Flavor-Mixing Matrix

    Full text link
    We study an energy-scale dependence of the lepton-flavor-mixing matrix in the minimal supersymmetric standard model with the effective dimension-five operators which give the masses of neutrinos. We analyze the renormalization group equations of kappa_{ij}s which are coefficients of these effective operators under the approximation to neglect the corrections of O(\kappa^2). As a consequence, we find that all phases in κ\kappa do not depend on the energy-scale, and that only n_g-1 (n_g: generation number) real independent parameters in the lepton-flavor-mixing matrix depend on the energy-scale.Comment: 6 pages, no figur

    The effect of Majorana phase in degenerate neutrinos

    Get PDF
    There are physical Majorana phases in the lepton flavor mixing matrix when neutrinos are Majorana fermions. In the case of two degenerate neutrinos, the physical Majorana phase plays the crucial role for the stability of the maximal flavor mixing between the second and the third generations against quantum corrections. The physical Majorana phase of π\pi guarantees the maximal mixing to be stable against quantum corrections, while the Majorana phase of zero lets the maximal mixing be spoiled by quantum corrections when neutrino masses are of O(eV). The continuous change of the Majorana phase from π\pi to 0 makes the maximal mixing be spoiled by quantum corrections with O(eV) degenerate neutrino masses. On the other hand, when there is the large mass hierarchy between neutrinos, the maximal flavor mixing is not spoiled by quantum corrections independently of the Majorana phase.Comment: 7 pages, 1 figures, LaTe

    Near-Solar-Circle Method for Determination of the Galactic Constants

    Full text link
    We propose a method to determine the galactic constants R_0 (distance to the Galactic Center) and V_0 (rotation velocity of the Sun) from measurements of distances, radial velocities and proper motions of objects near the solar circle. This is a modification of the solar-circle method to a more practical observational method. We apply the method to determine R_0 using data from the literature with known distances and radial velocities, and obtain R_0 = 7.54 +/- 0.77 kpc.Comment: 5 pages, 4 figures, accepted for PASJ (Vol. 63 No. 5

    Space charge and charge trapping characteristics of cross-linked polyethylene subjected to ac electric stresses

    No full text
    This paper reports on the result of space charge evolution in cross-linked polyethylene (XLPE) planar samples of approximately 220 ?m thick. The space charge measurement technique used in this study is the PEA method. There are two phases to this experiment. In the first phase, the samples were subjected to dc 30 kVdc/mm and ac (sinusoidal) electric stress level of 30 kVpk/mm at frequencies of 1 Hz, 10 Hz and 50 Hz ac. In addition, ac space charge under 30 kVrms/mm and 60 kVpk/mm electric stress at 50 Hz was also investigated. The volts off results showed that the amount of charge trapped in XLPE sample under dc electric stress is significantly bigger than samples under ac stress even when the applied ac stresses are substantially higher. The second phase of the experiment involves studying the dc space charge evolution in samples that were tested under ac stress during the first phase of the experiment. Ac ageing causes positive charge to become more dominant over negative charge. It was also discovered that ac ageing creates deeper traps, particularly for negative charge. This paper also gave a brief overview of the data processing methods used to analyse space charge under ac electric stress

    Scanning tunneling microscopy and spectroscopy studies of graphite edges

    Full text link
    We studied experimentally and theoretically the electronic local density of states (LDOS) near single step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the (3×3)R30(\sqrt{3} \times \sqrt{3}) R 30^{\circ} and honeycomb superstructures extending over 3-4 nm both from the zigzag and armchair edges. Calculations based on a density-functional derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20 meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the "edge state" theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations.Comment: 4 pages, 6 figures, APF9, Appl. Surf. Sci. \bf{241}, 43 (2005
    corecore